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Axisymmetric Boundary Layer Equations
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Abstract: A computer code has been written for a general f inite
difference solution procedure of the incompressible
boundary layer equations on a body of revolution. The
procedure, a fourth—order accurate extension of Keller’s
Box Method, is capable of treating laminar or turbulent
boundary layers up to a separation point and includes
transverse curvature effects. The analysis has been
coded for the Penn State IBM 370/3033 computer and has
been shown to provide solutions comparable in accuracy
to similar second—order schemes but with fewer grid
points and with less computer time. Results and corn— j
parisons with both experiment and second—order methods
are presented in graphical form for a low—drag body of
revolution.
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Nomenclature

*2r
C — wall skin fr ict ion coefficient — 

W

* *p U0,

c — turbulen t eddy viscosity —

*

p — static pressure — 
p

**p U 1,

• — body surface angle, see Figure 1

— Stokes stream function — — 

* 
. t

- 
p L U 11,

*

r — distance normal from centerline —

L
*r
0r — body radius — —
L

***P U L
Ø0

Re — Reynolds number — 
*

Ii

* 
I

,

u — velocity component in x—direction —

Uco

* H

ue 
— inviscid velocity at body surface — -4
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Nomenclature (Continued)

*

—u ’v’ — Reynolds stress in boundary layer — ~ ,,2 -

P u s.

x — arc length distance along body

* 
r

y — distance normal to body surface —

L

Other quantities are defined in the text .

• S r

p..

• S -~~~~ S
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Dimensional Referenc e Quantities

*L — referenc e length

*
14 — viscosity

*
V — kinematic viscosity

*p — density

* 
— wall shear stress -

*

u
1
* 

— friction velocity —

*
— free stream velocity
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INTRODUCT ION

A second—order accurate Keller box solution of the incompressible

axisyniinetric boundary layer equations has been employed by Cebect [I)

using the Mangler—Levy—Lees transformation to avoid a singularity at

the stagnation point. Unfortunately this transformation causes a

singularity at the tail of the body making extension of the calculations

into the wake region impossible.

A second-order accurate code has been written by Hoffman (6j which

uses non—transformed variables to solve the equations. This code is

incapable of starting at the stagnation point; therefore a complete

boundary layer profile must he input from the Cebeci program mentioned

above. With the untransformed variables the singularity at the tail

point is eliminated and better accuracy in the solution is obtained

near the tail.

The fourth—order Keller box method is a natural extension of the

second—order sch~~1a presently employed by Hoffman [6]. The term fourth—

order as used here refers to the truncation error in the coordinate normal

to the axisymmetric body surface. The truncation error in the tangential

coordinate is still second—order . The fourth—order scheme also uses the

non—transformed variables mentioned above and is set up to accept a 
•

boundary layer profile from the Cebeci program at a station downstream S

of the stagnation point in the same way as the method of Hoffman. A

fourth—order solution provides higher accuracy everywhere for the same •

~~ 

S

S mesh spacing or provides the same accuracy for a larger mesh spacing ,

U

__________________________________  •
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when compared to second—order solutions. Larger mesh spacing requires less

computer time to obtain a solution ; therefore the fourth-order solution can

provide the same accuracy with less computer time in spite of the increased

complexity over the second—order method.

INCOMPRE SSIBLE BOUN DA RY LAYER EQUAT IONS

The boundary layer equa tions on a body of revolution for steady mean

flow, including transverse curvature effects, are [1]:

Continuity ~~~ - (ru) + .~~~
- (rv ) — 0 , (1)

Momentum ~~~~~~~~~~~~~~~~ [rI-L h _ u ’v ’ll , (2)
ax ay dx r ay L ~Re ay j j  S

where dimensionless variables as defined in the nomenclature have been

used and the coordinate system is shown in Figure 1. The boundary

conditions are:

u(x , 0 ) — U  , (3)

V(x , O ) 0  , (4)

u r n  u(x , y) — u ( x) , (5)

where U
e
(X) is the inviscid surface velocity.

It is assumed that the Reynolds stress is related to the velocity

field by the relation . S
I ~— u v  —

~~~~~~~~~~
-
~~-- , (6)
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where c is the eddy viscosity . An algebraic eddy viscosity model is used

and described in detail in Appendix A. Using Equation (6) the momentum

equation becomes

u-~~ + v~~ = - + ~ -
~~
- r l~(l + c) . (7)

3x 3y dx rRe 3y L ayj

The geometric relation between r and y from Figure 1 is:

r(x, y) = r0(x) + y cos • . (8)

The term y cos • in Equation (8) is the transverse curvature term which

is impor tant at the af t end of the body where the boundary layer thickness

is of the same order of magnitude as the body radius.

The Reynolds number is eliminated from Equation (7), in the case of a

“thin” boundary layer, by introducing the scaled variables:

(9)

y . (10)

Equations (1), (7), and (8) become respectively ,

(ru) + —p-- (ri) — 0 , (11) 
5

.X ay

(12) 
5

X ay r 3 YL  3)r J

r (x , 
~~~) 

— r0(x) + “ cos • . (13)

1 ’1~_~~
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S

In order to use the box method, these equations must be rewritten In

first—order form. The Stokes stream function is introduced, defined by

ru— ~~~ , rv— 4~ . (14)
ay

The continuity equation, Equation (11), is identically satisfied by the

stream function. The Euler eqaution at the body surface which relates

the pressure gradient to the inviscid surface velocity is:

du
~~~~~— — , 1 ~~~ . (15) 5dx e d x  

S

If use is made of the laminar shear stress , def ined by

(16)

then the momentum equation, Equation (12), can be written in the following

first—order form:

.

~~

. 

~~~~

- (u2 — u
2
) — - -~~- (rbt) — 0 , (17)

ay

where

b — l + c  . (18)
Summarizing, the set of first—order equations to be solved is:

(rb ) - ~~~~~ (u2 - u 2
) - I , (19)

ay

ru , (20) r

-~— (u) ” t . (21) p
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The new boundary conditions become (6],

u~~~ j~ — O  at ~~ - O  , (22)
u -p u as . (23)

DEVELOPMENT OF FOURTH—ORDER EQUATIONS

The finite—difference procedure used in solving the parabolic boundary

layer equations is the box method of H. B. Keller (2]. The first—order

form of the governing differential equations, (19)—(2l) , when put in

finite difference form will result in algebraic equations which relate

unknowns along line (1+1), as shown in Figure 2 , to line i . The solution

along line i is assumed known and since the equations are parabolic the

solution at line (i+l) can be obtained. The result is a marching procedure

beginning at the initial station and proceeding downstream.

In applying Keller ’s box method one approximates the equations by

difference quotients about point P , the geometric center of the box

element, as shown in Figure 2. The derivatives in the axial direction

are second—order accurate and are given by simple centered differences.

The fourth—order accurate expression used for derivatives in the normal

coordin te is given by Wornom [3] as

- - 
~~ 

+ gj} + * k+1 - 

~
“) + O(h~

5) - 0 ,

S 

5 (24)

where primes denote differentiation in the normal direction (w.r.t. ~
)

and h~ is the step—size in the normal direction given by

h~ — — . (25)

I
II
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represents a matrix of the differen tiable quantities from Equations

(l9)—(2 1) given by
rbt

(26)

Ftom these equations the first derivative of g is obviously

t + ~~~~~ (U
2 

- u
2
) 1

ru j . (27)

The form of g” , however , is not so obvious, and becomes quite involved

algebraically. In differentiating Equation (27) one obtains terms which

contain the derivative t ’ . Here the turbulence model used to determine

the eddy viscosity c becomes of great significance. In the inner region

C is given by

c — c~ III , (28)

where

CC 
— Re3”2 ~2 ~ , (29) 5

r0

and where £ is the mixing length, also a function of y • In the outer

region, however , £ is constant and independent of boty y and I . See

Appendix A for a more detailed description of the turbulence model. S

The derivative I ’ may be determined from Equation (19) by using the S

product rule of differentiation and isolating I’ • In the outer region
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the value of b from Equation (18) is constant and is left as such. However,

in the inner region the value of b is a function of y , and must also be

differentiated. Thus the expression for I ’ in the inner region becomes much

more complicated than that in the outer region. Appendix B shows the deriva—

tion of g” for both of these cases, the results of which appear below:

.~ a~ a a  2 2 ~~f i_T _ (ru)+
~~
ru)
r

+
~~~r

(U _ U
e

) 3x~1+2st

r l a  2 2 T~~~ , 2 a a 21
— u  ) — — — S T  — — t — — sT

L2ax e rax r r
g” inner = 5 (30)

{ ctu + ri I

{[
l+~st} 

[
~ 

~~~~ (U
2 

- U
2
) - 

I ~~ - ,
~
2 - - S

-T .J
~

— (ru) + (ru) + ~~~~~~~~~~ (U 2 
- U

2
) -

3 2 2 a~1— ( U  — u  )— a b t — t — — Ig outer = 3x e ax] (31)

{ au + rT }

{ ~~~[~~~~
(u
2 _ u

e
2)_ a b T _ t ~~~~

} 

S 

S

Equations (26), (27), and either (30) or (31) are then substituted into the

finite—difference expression, Equation (24) to obtain three nonlinear finite—

difference equations. The 
~~~ 

terms in these equations are approximated by

— -  S . — -‘S —
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a central difference quotient, as already mentioned , making the equations

second—order accurate in the x coordinate and fourth-order accurate in

the y coordinate. The non—linear te~.uLs are then linearized by Newton’s 
S

method to obtain three linear finite—difference equations,developed in

Appendix C, which are shown below:

A A A
Alj+i j&Pi+i j + Blj+1 j6ui+l i 

+ Cli+i~~6Ti+i j

A A A A
+ Dlj+i j&Pi+i j+i + Elj+i j6ui+l J+1+ Fli+l j6Ti+l j+1

= S1~~1~~ 
(32)

A A A A
+ E2 I+1 J 6U 1+1J  + C2

~+1~~&r~+1~~ + D2i+i J
&PI+1 J+i

A A A
+ E2 i+l jóuj+l j+l+F2 1+l j&i÷l j+l 

= S2
i+1,j ‘ 

(33)

A A A 5

~~i+1,j ~~ i+l ,j + B31+i j sSui+l 
~ 

+ C3i+1 i
&ri+i j + D3i+i j6*I+i~~+i

A A A
+ E3 i+1 j 6

~i+1 ~~~~ 
+ F3j+1 j 6~j+l ~~~~ 

= S31+i j (34)

where the “6” terms in the above equations indicate corrections to 
~

u , and t . The appropriate boundary conditions become

0 
‘ 

(35)

5 .. 6~i+l 1 = 0 , (36)

= 0 . (37)

5-. 5—• - -r5
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MATRIX FORMULATION AND SOLUTION

In order to put the equations in tridiagonal matrix form, the boundary

conditions given by Equations (35)—(37) and the finite—difference equations

given by Equations (32)—(34) are grouped in the following fashion (i+l sub-

scripts are understood):

6u = 0  1st

A1 A A A A A A
A31

6ij
1 + B316u1 + C31&r1 + D316t 2 + E31t5u2 + F316t2 — S31

5 A A A A A A A
+ B1

1
6u
1 + Cl1’5t1 + D11&~,2 + El

16u2 + Fl16t2 
= Si1

A A A A A A A ndA2
f
S~P1 

+ B2 16u1 + C216t1 + D2 1&~2 + E2
16u2 + F216t 2 = S21 2

A A A A A A A
A3 264i 2 + B3

2
6u
2 + C3 2&t 2 + D32&~3 + E3

2
6u
3 

+ F32&r
3 

S21

A A A A A A A
~~~~~~~~~~ + Bl

j..1óu~...1 + C1~_1&r~..1 + Dl~_1&P~ + Ei~_16u~ + Fl~_1&r~ = S1~_1 S

A A A A A A A thA2~~1&P~~1 + B2~ 1ôuj 1 + C2~~16t~_1+ D2~_1&P~ + E2~...16u~ + F2~...16t~ = S2~ ....1 iA A A A A A AA3~~1&P. + B3~âu~ + C3~&r~ + D3~~SiP~~1 + E3~6u~~1 + F3~ 6T~~ 1 — S3~

A A A A A A A
AlN6~PN 

+ B1N6uN + C1N6IN + DlN óIj
~N+l + E1N ÔUN+l + F1N&rN+ 

= S1N 
5

A. 1. A A A A A A thA2
N&~N 

+ B2
NLSu

N + C2N6TN + D2N&PN+1 + E2
N6UN+l + F2N6TN+l 

= S2
N (N-s-i)

4SUN+1 0
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By defining a 3—component column vector according to

— ôu J , (38)
LoT J~

the preceding equations can be written as the following system of matrix

~uations : -

+ C1Z2 — R1 , (39)

B~Z.1 + A~Z~ + Cj Zj +i = R~ , 2 < j  < N , (40)

BN+1ZN + 
~~+lZN+l 

= RN+l , (41)

where ~~ B~ . and C~ are 3: x 3 matrices as follows :

A
1 

[~ 
~~~~~ ~~l] 

‘ 5 
(42) 

:~

= [
~ 

0 ~] , 1 < j  < N 
• 

(43)

5
.

A A A
B~ — A2~~1 B2~~1 C2~_1 , 2 < j  < N+] . , (44)

0 0 0

_

~
ij_i 

~~j—l 
~~j_l 

- 5~.5 A A A
F A~ — D2~~1 E2~~1 F2~...1 , 2 < j < N , (45)
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A Abi
N 

E1N Fi
N 4

A A A p

— D2
N E2

N 
F2N , (46)

0 1 0

and the R~ are 3—component column vectors as follows:

r O l
R
1 

~~
O 

‘

L s31]
Sij —l
A 5

= S2~_1 , (48)

and

A
S1N
A

RN+l 
= S2

N 
(49) 5

0
L

Then Equations (39)—(41) can be written in the compact block matrix form:

At
Z R  , (50)

where A
t is an (N+l) x (N+l) block tridiagonal matrix given by

— - 
‘
S

A1 
C1

0
B2 A2 C2

= B
3 A C

3 , 
s (Si) S

-

BN A.d CN
- 

BN+l AN+l

-
~~~ 

5 - ’
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and Z and R are (N+i)—component column vectors as follows

Z1 R1

a2

I I
(~ Z)

I I
ZN+l RN+l

Because the coefficient matrix A
~ 

is block tridiagonal, Equation (50)

can be solved by an efficient elimination procedure similar to that

used by Keller [10]. This procedure is presented in detail in Appendix D.

The result is a solution for each of the correction terms &j~, 6u , and 6t

in Equations (32)—(34).

These correction terms are then addc~d t. the values of

uj+i j.s-l~ 
etc., in order to obtain new iterates for these variables.

The iteration procedure is continued until prescribed convergence toler-

ances are met.

RESULTS

in this paper computer solutions using the present fourth-order box S

method are compared to the second—order box solution of Hoffman [6] and

with the experimental results of Patel and Lee (14] for a low drag body •

revolution. The body used was the F—57 body, shown in Figure 3; its

5 5 

- -.
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coordinates are given below [14]: 5

For 0 < x0 < X~ (fore—body)

= 

{ 
-1.1723 4 + 0.7088 + 1.0993 + 0.3642 

~~~~ }

½ 
.

For X < x
0 

< 1 (pointed aft—bod y) , 

S

r ½
= { —0.11996 - 2.58278 4 + 3.52544 + 0.17730 

~~~ 

} , (54)

where 
~l 

= 
~~~~~ ~2 

= — x
0
)/ ( l  — x ) ,  x0 is the axial distance measured S

from the nose, r is the local radius, x is the axial location of the maxi—o m

mum radius r
m , and all length variables have been non—dimensionaiized with

respect to L*, the body length (L* = l.2l9m). Thus, X = x */L — 0.4446,

* *  5 6r = r IL = 0.1170. All solutions were at a Reynolds number of 1.2 x iOm m

where Re = • The experimental measurements (14] were taken with
V~ * *the boundary layer tripped at x0 = x0 /L = 0.475 by a circular trip wire

of 1.664 mm diameter wrapped around the body . Subsequent analysis of data

revealed that the downstream influence of such a relatively large trip

wire may have persisted up to x0 = 0.6 [14]. The turbulence model used

in the computer code cannot accurately simulate such a sudden jump fr om

laminar to turbulent flow; thus a transition intermittency factor has

been included as described in Appendix A. The axial. distance where the

transition region should begin in the computer solution was then chosen
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by equating the momentum deficit area of the calculation to that of the

experiment. Following Hoffman [11] an axial station at x0 — 0.3271 was

used in the calculations.

The pressure distribution input to the computer programs was taken

from the strong—interaction calculations of Hoffman [11]. The iterative

procedure used to generate these data is based on a correction of the

displacement body idea to represent streamline curvature effects by

means of a simple pressure mapping, and is described in Reference 11.

Figure 4 shows this distribution as a function of the axial body

coordinate.

As mentioned previously, in order to avoid a singularity at the nose

poi it , the computer codes for both the second— and fourth—order box

solutions, which use non—transformed variables, are set up to accept as

input a boundary layer profile at some station downstream of the nose.

The station was chosen in the laminar region at x
0 0.09548 and the

profile was generated with Hoffman ’s second—order computer solution

which uses the Mangler—Levy—Lees transformation [6].

Integral Parameters S

Calculations were made of the integral parameters C
f~ 0, 

and H at

each axial coordinate x
0 
where 0 is the momentum flux deficit,

(55)

— I-
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H is the boundary layer shape factor,

*

(56)

*6 is the mass flux deficit

6* - f (
~ 

- dy (57)

0

and C
f is the wall friction coefficient,

2t
Cf

= w (58)
P U

Results are presented in graphical form in Figures 5—7 for Cf4 8, and

H,respectively, as functions of x
0
. The fourth—order calculations,

which start with an input boundary layer profile of 11 points in the

normal coordinate at an axial station of x
0 

— 0.09548, are compared

with the second—order calculations [6], starting with an input boundary

layer profile of 31 points in the normal coordinate at the same axial

station. The experimental results [14] are also shown for comparison.

Figure 5 shows that the calculated C
f 

agrees well with experiment for

0.6 < x
0 

< 0.8, but disagrees sharply both fore and aft of this interval.

From Figure 6 one can see that the calculated 0 is lower than experi— 
‘

S

ment for the interval 0.6 < x0 < 0.9, but slightly higher aft of this

interval. The calculated shape factor H in Figure 7 has very poor S

agreement with experiment. The reason for these disagreements is

~~~~ 5

•.

[S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - h - -



— 5  — -5- - - --- - — -

—22— February 2, 1979
JMC:cac

attributed to the inability of the algebraic turbulence model to accurately

simulate the large trip wire used in the experiment , and to the general

inadequacy of the turbulence model in the tail region.

All these figures show that agreement between second— and fourth—

order calculations is quite good; the differences between the two being

indistinguishable on most of the body.

Boundary Layer Profiles

Figures 8—10 show the boundary layer profiles at axial coordinates

of 0.601, 0.880, and 0.990,respectively. The calculated profile at x
0 

— 0.601

(see Figure 8) reflects the influence of the large trip wire used in the S

experimental claculations; the calculated results near the wall are less

full than the experimental results. At the two downstream stations where

the effect of the large trip wire has died out, the opposite is true; the

profiles are slightly too f ull near the wail, as can be seen in Figures 9

and 10, for x
0 

= 0.880 and 0.990 respectively. These discrepancies are

attributed to the inadequacy of the algebraic turbulence model near the

tail of the body.

In Figures 8—10 the second— and fourth—order calculations are seen to

be indistinguishable. Note that the fourth—order calculations were made

with a mesh—spacing three times as large as that of the second—order

calculations.

Computer Run Times

As mentioned previously, both the second— and fourth—order calculations

were performed on the Penn State IBM 370/3033 computer system. The net

C.P.U. time for the second—order calculations shown in the figures was

- .
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38 seconds, whereas the net C.P.U. time for the fourth—order c1~cu1ations

with one—third of the number of points in the input profile was 28 seconds.

This represents a 26 percent decrease in run time for the fourth—order

method .

CONCLUDING REMARKS

A fourth—order box solution of the incompressible, axisymmetric,

laminar or turbulent boundary layer equations has been presented and ,

as an example, applied to a low—drag body of revolution. For this case,

the fourth—order solution had an input mesh—spacing three times larger

than that of a second—order solution, but provided results of equivalent

accuracy and with 26 percent less computer run time. Fourth—order box

solutions of other equations have also been found to provide the equiv-

alent accuracy of second—order solutions with fewer mesh points and

requiring less computer time. For example, Wornom [3] has achieved such

a result for the two—d imensional stagnation point solution.

One disadvantage of the fourth—order box solution presented here

should be noted . The solution sometimes has greater convergence

difficulties at the outer edge of the boundary layer than does the

second—order solution with the same input conditions. Convergence

problems have been noted for solutions with very small mesh—spacing

or with smaller convergence tolerances. These problems were especially

prevalent when the one piece turbulence model of Glowacki [12] was tried .

No convergence problems were encour~tered with the second—order method

using this model, but the fourth—order method would not converge to a

-~~

• — —  —5 _ •I~5.
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solution aft of axial coordinate x
0 — 0.880. The reason for this behavior

is not known; one possibility is that because of the increased complexity

of the fourth—order coefficients, numerical noise is amplif ied as these

coefficients get very small at the outer edge of the boundary layer.

This problem requires further investigation

Other fourth—order accurate methods are available which have not

been considered in this paper. See, for example, a comparison of higner—

order solutions by Rubin and Khosla [13]. On the other hand, spline

methods may provide the same advantages as the fourth—order Keller box

method , but with much less algebraic manipulation (a quantity of great

abundance in the method presented in this paper).

r

r

4

S .- . 
.
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Appendix A

Algebraic Eddy Viscosity Model

This appendix describes the de tails of the algebraic eddy viscosity

model and treatment of the transition region. In this model the boundary

layer is divided into an inner (law of the wall) and an outer (law of the

wake) region; each region has its own equation with the Junction betwe~n

the two -occurring when c
1 0

Inner Region

The inner eddy viscosity used is that of Crawford and Kays (5] as

-modified by Hoffman [61 for a thick axisymmetric boundary layer. The

final form is 5

= Re3~
12 

£2 r 
, 

S (A.1)
S o a y

where 9.. is the mixing length given by

P.. = 0.41 Y 
[i 

— exp [_ 
~J] , 

S 

(A.2)

and Y is the modification for thick axisymmetric boundary layers mentioned

above and is def ined as
r 

-cos~ r . S S (A.3) S

A is the sublayer thickness parameter; in universal (law of the wall)

variables, S

A+ 
— A Re u , . (A.4)

where u is the dimensionless friction velocity given by

u — 14 Cf 
J

½ 

* 

- (A.5)

and C
f is the skin fr iction coeff icien t based on U,,. The empirical

formula of Crawford and Kays (5] is used for the sublayer thickness

parame ter , which for an impervious wall is

S -5- 5 5 S~~~~~ - - S 5 S S S~~~~5- 55-5~~~~~~~ S- 5~~~ S
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A
4

A+ = 
‘ (A.6)

+ l.0+ aP 
+ 

S

where A fp is the flat plate value of A = 26.0,

[30.175 if p+ .

S

.

and :+

=
~ :~:; 

P~~> 0 , :: ::
The above expression for A

+ was derived from data for equilibrium

two—dimensional boundary layers. In a rapidly changing pressure gradient

the boundary layer does not instantaneously adjust to a new equilibrium

state. Instead, it tends to lag in its adjustment; to allow for this lag

Crawford and Kays [5] have introduced a-lag equation given by

dP4 P~~_ P~ S 
S

eff 
= 

eff (A.9)
dx T ‘ S

+ +where T is a time constant, P is the ef f ective value of P to beeff
- used in the relation for A

4 (Equation A.6), and P4 is the local value

of P4as given by Equation (A.8)~ The value of T used is Hoffman’s S

modif ication [6] of Crawf ord and Kay ’s suggestion [5] which is

T 4000 
. (A.l0)Re u

T

Equation (22) is solved by using centered differences and def ining

÷ 1’
P~~_f. 

S 

, (A.ll) 
S

to get the finite—difference form 
S

P+eff j+l ( 
_____

~ 

[[1 
— 

~ 
P eff j 

+ AX
1 i+l/2] (A.12)

+ 2T
i+1J . 

S 
S

Equation (A.l2) is an iterative equation because of the term Tj+l, so that each

time the vector of unknowns at (1+1) is updated in solving the non—linear

finite—difference equations of motion, Equation (A.12) must also be updated.
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Outer Region

In the outer region of the boundary layer the eddy viscosity is

taken to be constant using the form suggested by Clauser which when

non—dimensionalized becomes [7]

*
c = Re a U

e 6k ‘ 
- 

(A.l3)

where is the kinematic displacement thickness given by

= 
l f ~~ — dy , (A.l4)k 

~~~~~~~ U )

and a is a dimensionless quantity which accounts for low Reynolds number

effects. Cebici has obtained the following expression for a (8]:

l +,r S

a a  - (A.15)

where

a — 0.0168 , (A.16)

— 0.55 , 
- (A.l7)

= ‘r El — exp (—0.243 T1 —O.298Z
1)] , (A.l8)

Re0 
S

S 
~l = 42~ 

— 1 , (A.19) 
S

and Re
0 is the kinematic momentum thickness Reynolds number defined by
k

Re0 — Re 0. u ~ (A.2 0)
k i c e

where

4 Ok — ~~~~~~~~ f ~~~~~~ (1 
— ••L_) d~ . (A.21)

Note that when Ree < 425 , the argument of ~! in Equation (A.18) becomes
k kimaginary. For this case one sets iT to zero.

- S
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Transition Region S

Since an algebra ic eddy viscosity is used to model turbulence effects S

in the boundary layer, there is no built—in transition region. From an

empirical curve I it discussed in Reference 6 a point is picked along the

body where turbulence is “switched on ,” or tripped. It is not realistic

to model the transition region by simply preceding from- laminar to

turbulent flow in one streamwise step. Therefore to account for the finite

distance required in the transition region for the boundary layer to become

fully turbulent, an intermittancy factor is used to reduce the intensity

of the turbulence parameters. This factor, from Chen and Thyson [9], is

given by S

1 — exp(—g u 3 I~ 12) , (A.22)

where

g — 
~~~~ 

Re~~~~~~
34 

r(xtr
) , S (A.23)

(A.24)

Xtr

12 
— 

!~~~~~~~ 

• 

‘ (A.25)

Re Re u x . (A.26)
X e tr

The trapezoidal rule is used in the computer code to evaluate the running

integrals 
~l 

and I
2~ 

The eddy viscosities in the transition region are then

miltiplied by 
~tr 

to give

~~i~ tr £i ~tr ~ (A.27)

~~o~tr 
— L

o 1tr (A.28)
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Appendix B
-S

Differentiation of Vector g’

-‘ .. S

This appendix describes in detail the differentiation of the vector g’ with

respect to y to find g” in both the inner and outer regions of the boundary layer.

Inner Region S 
S

Equation (27) can be written in component form as

g 
, , j~~1+

r a  (
2 2

u — u  ) , - (B.l) S1 3x Zax e

— ru , (B.2)

• (B.3)

Differentiating Equation (B.l) yields S

— S t

— —(u u~1~
’ ~~~~~~~~~ — r ’ + r’ a 2 

— 
2) ~~~~~!. ~~._(u2_u 2) 

]

S 

L axJ ax 3x e 2 e . (B.4)

Using Equations (20)—(21) simplifies the above equation to

—T ~~
— (ru ) + (ru) ~~~~~~ + ~ ~~

— (u2 — u 
2) — (

~~5)ax ax 2 ax e ax ~

where from Equation (13), -

a r ’ . 
S 

(B.6)
S 

S 
-S

The second component of g” becomes

— a~ + tt , (B.7)
— 

S .

and the third componen t becomes

g
3
” = t ’. . (B.8)

To evaluate T’ the product rule is applied to Equation (19) to get

rbr ’ + rTb ’ + abT L1~. 
2 2 

— (B .9) - 

p
2 (u — u )S ax e ax

Differentiating Equation (18) and substituting Equation (28) yields

b’ S’T + ST’ , (B.10)

where

s CE T/ITJ 
(B.ll)

— ~—. - S
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Thus, by substituting Equation (B.lO) into (B.9) and isolating Tt ,

the following expression is obtained :

= ~~
‘ 

(l+2sT) ~4 F (u2 — ti
e
2
) — — S’T

2 — t — 
~~

- st~ (B.l2) S
The value of c obtained above must be substituted into Equation (B.5) to

give 
S

g1
1’ = —T F (ru) + (n i) + 

~~~~~

- (u~ — U
e

2) — -

{l+~
sT) [4F

5(u1
2 

— “e
2 

~~~ 
~ ‘~

2 
~~~~~ ~~~~~~~ ] . (B.l3)

Combination of Equations (B.13), (B.7), and (B.12) yields the final

form of 
~
“j e  as given by Equation (30).

Outer Region S

In the differentiation of g’ in the outer region it becomes apparent

- that Equations (B.5) and (B.7) still hold. A different expression for

~r ’ must be developed however because the eddy viscosity in the outer region

is now a constant. From Equation (18) it is seen that b is also a constant; S

Equation (19) then becomes

rbT’+ abT =
~~~F(u

2 _ u
e
2)_ t

~~~ , 

S

which leads to 
S

83
” 

— t ’ — (u2 — u
e
2) — abt — r . (B.l4)

Substitution of Equation (B.l4) into (B.5) results in the following

expression: S 
- - 

S

g1
” —T ~~ (ru ) + (u 2 _ u 2) — [h.) [ 

(B..l5)

Combination of Equations (8.15), (B.7) and (8.14) yields the final form of

~
“
outer as given by Equation (31).

:~Sf
— - , S - ~~~~~~~~~~~~~~~~~~~~~~ ~- .  —
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Appendix C

Derivation of Finite—Difference Expressions

This appendix describes in detail the derivation of the three linear 
S

finite—difference expressions given by Equations (32)—(34).

The first step in the derivation is to substitute Equations (26) , ~27) ,

and either (30) or (31) into Equation (24) to obtain a set of first—order ,

nonlinear finite—difference expressions for either the inner or outer

regions of the boundary layer. The inner layer is considered first; these

expressions become

(rT)
j~~1 

+ (rsT2)
j~1 

- ( )  - (rst~~~ - ~
.1 

~~~~~~~~ F (*~+~
) + 

S

a 2 2 a (~~)÷ fr) L (u
2 _ u 2

)
l 

÷ hL ..[ a
~~ 

(u~~~ — U ) t
j ax j ax •j  e j 12 CTJ+l 

~~

a a~~ 2 2 ~ ____(ii — u  )—(r u)
j~~ + (ru )

j÷l ~~ ~~~+~) + 
~ ~~ J+l e ~~ ~

hI
~~ +i) [l+28T)

j+l 

S

. 5  
-

~~~ 
1

1 T 1  —2ax ~~~J+l 
u ) — [ —[i

~~ 

2 
- 

2 I
T) 

a (*~÷~
) - (s ’T2)~~1 

~J+l
e 

- 
r

‘~ 
~1 1 a a , a a  2 2+ T — (ru1 s t (u — u)j+iJ ~ 

ax ~~~~ 
(ru)

J ~ 
..r~ ) — 

~ J e

_ _ _  

n a 1 2 2F (~~
) I 1+281J~ ~~~~~~~~~~~~~ ~~~~~J 

- ue ) ~ F 
- (8tT2) - (aI—ri —

J ~n i ~

Ia 2) ]
1~ — ~ (C.1)ST

I
~j+l 

- - 
~~ {ru j+l ÷ (ru)

j] 
+ 
~~~ [auj+l 

+ (rT)
j~1 

-

- (rr )
j 

— 0 - (C.2)

- 5.
S ~~~~~~~~~~~~~~~~~ -—
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and S

- U~ - 

~~ 
(rj+l + T

j
) + 

~ ~~
l
~
2st j+i [4 F 

u
j~j

2 - u 2
) -

[r1~+l 
F (*~+~

) - (s ’T
2
)
j+l 

- [
~ 1 ~ sr2} J~ [l+2S~)~ ~+F

(u~
2 

— u
e
2
) — 

[n j F (tl~j) — (s ’r 2 )~ — ~~~
. ~) — 

[~~

. s.r~) J} — 0. (C.3

Consider Equation (C.2) first. Since there are no x—derivatives it can be

evaluated at (i+l, j+112) which corresponds to point Q In Figure 2. Equations 5

(C.l) and (C.3), however, contain x—derivatives which are approximated to

second order by using central differences, and the expression’is evaluated at

point P in Figure 2 , (1+1/2 , j +l/2) , the center of the box element . The

resulting expressions are quite lengthy and will not be shown here. However, some

examples of terms which appear in Equations (C.l) and. (C.3) appear below:

F = 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

— tf~~~~),  (C.4) S

4 [(st
T
2
)
l+l J÷l

+(s
?
T
2
)j~~+l}

. (C.5)

As stated previously, the boundary layer equations are parabolic,

tnat is, there is no upstream influence so that the solution is obtained

by marching downstream. Thus, only the values along the station (i+l)

are unknown. The above expressions are nonlinear and must-be linearized

in order to obtain a solution. Since Newton’s method is used to solve the

finite—difference equations, the expressions are linearized about known values

at station I and the known boundary conditions at station (i+l), viz.

S S _~S~
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*i+l ,l ,

‘
~i+l,j ‘ 

2 
~ 
j ~ N , (C.6)

*I+l ,N+l — *i,N+1 ‘

uj+i i — 0

— ujj ~ 2 
~ 

N 
~ (C.7)

(1)
U
j41 N+1 — Ue

and S

T1+1,1 i,j

— t j j  ~ 2 
~~ i ~ N ~ (C.8)

(1)
~i+l 14+]. 

— ~~j ,N+l ‘

where j  = N+1 represents the grid point at the outer edge of the boundary

layer and the superscript denotes the Iteration count. The higher—order

iterates are then

(n+l) 
+ ~ 

(it)4’i+l,j “i+l,j  *i+l,j
(n+l) 

ui+l j~~
’
~ 

+ 6uj÷i j~~~ 
, n — 1, 2, ... (c.9)

(n+l) 
— 

(n) 
+ ~~~~~ 

(n)
i+l,j i+l,j i+l,j ‘

which are introduced into the finite-difference equations developed from S

Equations (C.1)—(C.3) , with only linear terms in the correc tions being

retained in the result. After much algebra, which will not be shown

(a) (n)here , a coupled linear system for the corrections (6*i+i , 6u
1~1

is obtained for 1 i j ~ N+1, which 13 represented by Equations

(32)— (34). The superscript n is understood in these expressions, and the

coefficients  are given by

S 
-- S  -~~~
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~~i+l,j 
= —2 

~ (C.J0)

~
i
i+l j 

— _h~ rj+l j 
— h~ . (a j+1) (C.].l)

= — 
6 rj+1 j 

S 

(C.12)

= 2 
~ (C.l3)

= —h~ rj~l j+l + ! ! .  (a1+1) 
~ (C.l4)

2
A h
Fl i .

~
L r (C l5) S1+1, j 6 1+1, j+l

A 1
S 

slI+l j  = 2*I+l,j+l + 2
~i+l,j 

+ h~ (ru )
j÷1 j+1 + (ru) j÷1jj

A 

— + [aj+i 
(ti

141 j+l - u1+1 ~) + (rT)j+1~~+1 — (rT) j+l j] 
(C.16)

A21+i j Ax1 
(r
1+1 3 

÷ tj j ) + ± {
~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~ 
(T
1~1j  + T

jj
)

÷ (HcJ)i+ij] 
- (C.l7)

2

~~i+l,j 
= —2h~(~u)1~1~~ + —4-- 1~J [(wu)j÷l j f~) — (uA 0) 141~~ 

- 

S
+ T j j  ri+l j] 

(C.l8)

A h h 2

C2
1+1 j 

— ~2r
1~1,3 

—4 (srr)j~1j + 
~ 

4’~+~~ — *~~ ) + 

~•f [~J
[_(wfl)i÷i, j  ~~~~~ 

- 
~~~~~~~~~~ 

- (wX) 141,~ + (za) 
~~~ ~ _2(ru)

i,j] 
(C.19) S

L
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+ ~~~ 1 1 ) 
~~WU)

j~~1 j÷1 
(T j÷~~j~~ +,i Ax1 

(T j~ 1j ~ 1 + T j j ~ 1) 
6

T
1 j41

) — (Ha)
i+i j÷i] (C.20)

- -2h (~U)j~1 j41 + ± [~~~~~) 
{_(wu)j+j,j+1 f~) + (uAo)i÷i j÷1i+l,j j

— ~i ~~~ r~÷1~~ ÷1] (C.2l)

— 
~
r1÷1,~ +1 + 4(srr) 1+1 j+l ÷ ~~~ 

(*i÷l,j+l — *i,j+l) + ±

(1)
i~~~

j [~~~i+l,j+l ~~i+l,j+l — *j ,~ +~
) ÷ 

~i+l,j+l — (za) j+1~~+1

+ 2(r u)jj+l} (C.22)

A
- 2[_ (rbT)j÷l~~÷1 + (rb~)j+1 jJ 

+ h~ {~ 
[~J [Ti+l j+i ~~i+l,j+l

+ ~I j+l *i+l,i+lJ 
+ Bi+i j+1 (U

2

141 j+l + ~i+1,j+l~ 
— f~J

— *~~
) + Tj j  *j+~ ,j ]  + 8i+l,j 

(U
2
141~~ + Yi+1,i))

~~~~~~ L 1 l  2
6 

~~~~~~~ ~~ ~~~~~~~~~~~~~~~~ 0
1÷1 ~~~~~~~~~~ 

+ — 2[_ti÷1,j÷1
(u

(ru)
jj~1 + Ijj+~ 

(ru)
i+1,j+1} 

+ (wa)
i+1 j 

- A0 (u2j+1~~ + ~~~~~~~~~~

+ 2 [_ri+1,j 
(ru)j,j + t~~~~ (ru)

i÷lj]} 
~~~~~~~~~~~~~ 

(C.23)

S S S •  

- 
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2 [(rb-r)i j+i 
— (rbr )

jj} 
- ~~~~~~~ ~-r*)~~~ ÷1 + (r*) ij }  (C.24)Ax1

A ± (Hn)1~1~~ (r j +1 3 + t~~~
3

)  (C.25)1+1, j

A h
1
2 

1)B3
i+l,j t. ~ 

(Hu)
1~1~~ (C.26) 

S
Ax1

A
C3 =
i+l,j 

_h
~ + 

±{~~
20) i+l ,J + H

i+i,j [fli+1,j (*i+l,j — ~~~ + ~~~ 
S

= — ± (Hn)141~~~1 (Ti41 j+i + Ti j+l 

(C .27)
) , (C.28) S

i+l , j

A 
2 + -4- [~~~~ ) 

(Hu)
141~~~1 (C.29)E3 —

1+1, j

A 
—h ~~~ [(sH

2a)
i+l j÷l + H141 ~~~ [fli+i,j+l (*i+1 j+l

= 
j 6

- *i,j +l) + Xi+l j+l)~~ . (C.30)

~~~~~+i+l,j i+l,j+l u141 
) + h (T

i+i j+1 
+ Ti+l j  6,j j

[(Ha)i+i j+l — (Ha)
1+lJ] 

+ (C.3l)i,j

i.1

— 2(—u
1,~÷1 

+ U j j ) + h~ (r j j + i + ii i
) (C.32):L,j

5- -
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where the various parameters in the above equations are defined by

(ci)
~i+1,j 

— 
J~~~÷1,~~ 

(l+2c) j+1j + 2(s ’T) 141~~ (C.33)

1 I(il 
+ 1k’) ] , (C.34)2Ax1 LI4 i+l,j 1rJ~ ,j

2 2 _ 2
e i e 1+1 i,j (C.35)U U

1 + [!) I (C.36)
~i+l,j 

— 

~~~ 
L12Ji+l,j 2J 1~~

S S

A1, 1+1 
— 

~~
- (a~~.1 + a~) , - (C.37)

H141~~ 
— 1/(b 1~~ + Cj~1j ) (C.38)

1 2
= -

~~~~
— (u 

~~~~ 
+ 

~i+i ,~~ 
— 

~~~~~~ 
( t

141~~~ + r
u
) 

~~i+l,J 
— 

~~~~~~~~~~

- T i+l ,j  [[
~~

)
~ +l~~ 

+ (s ’T) ] - r~~~ + (5 ’T)
j j ]  

(C.39)1+1,1 Lir ~i,j

S 
- w±÷i ,j  

= 

~~~ ~~~~~~ 
— ~~~ ~ c.40 

S

S —

= (H2S)141~~ (*~~ — 
~i+l j~ 

- (C.41)

The outer region must be considered next. Substitution of Equations

(26), (27), and (31) into Equation (24) yields the following set of first—

order , nonlinear, finite-difference expressions for the outer layer:

— -~~
S I
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a r
~~ 1a  2 2(rbT)~÷1 

- (rbT)~ 2 [Tj+i ~~ ~~ +~
) + 

2 ~~~~~ (u - U
e 

)

r a 2 ~~~~~ a
~~ 

(
~~) + ~~~~

- 

~
- (u - u )j 12 ~~Tj+1 ~~ 

(ru)
j+l + (ru)

j+~

a a 2 2 1 a 
~~~~ 

( 2 2
U -u  ) -F (t j+ l) + -

~~~~~ (u~÷1 
— u 2 ax j-fle br~÷1 ax

a 
~~~ 

i— ru) a a a  2 — u 2) +(ru)~~ — (  —— t
j41 ~~ ax ax T

j
) — 

~~ (Uj  e

1 a ) a (u 2 - u 2) - abr~ - F (*j )I~ - 0 , (C.42)
~~~~~ ~‘i 12 1 - j e

h
2 [1 [ri~~~a 2 _ U 2

)U — U — ~~ (r~÷~ + T
j
) + 

~~~ br 2 9x j+l e abt
3~1j+l

a i a 2 2 
— — i— (*~)]}_ 0 (C.43)

* . ~ i+i ~~~~ ~~j +~~] 
- 

~~~ ~
2 

~~ j e j  j  ax(u — u  ) abr t

Note that the middle equation In this set was left out as it is identical to

Equation (C.2) for the inner layer. The same procedure is applied now to the

above equation set for the outer region as was applied to the inner set of

equations. That Is, they are approximated in the center of the box using

central differences and then are linearized using Equations (C .6)—(C.9 ) . The

final result is the coupled linear system for the corrections (6IP
i+i
”
~~
,

(ri ) (n) ) represented by Equations (32)—(34). The form is

identical to that of the inner layer, but with some modifications to the

coefficients as shown below:

-

1+1, j 6 I~~ J 
ao i+1,j ~~~~ - ~~~~~~~~~~ [

~~~~)

(T
j÷1 j  

+ ru ) + 
~ 0 ~~~~~~~~~~~ 

(C.44) S~

S - - S 
S - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 

S S
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-2h~ (~u)141 3 
+ ~~~ ( 1 )

3 I. ç J  1 ~~ r
~+i 

~ 
— (uA

0)1~13

+ 
~O ~~~~~ 

- 
~~~~~~~~~~ 

(Bu) j+1j } (C.45)

2
J I l ~

~~ i+l ,3 -2 (rb) + 
~~~~ (*j~~~~ - *jj) + 

h 

~~~~i+l ,j  Ax

+ 00 ~~~~ ~~~~~~~~~~ 
- 

~~~ [_ bA0 1+1,3 
— 

~~~~~~~ 
~~~~~~~~~~~~~~ - *~,~ )]}~ (C.46)

~ c 1+1,3+1 + ~u j+l 6 ~0 1+1,3+1 [(*~+~,~+~ —

i—I (t

~~~~ 
i+i ,j+i + T

1,3~ 1) — 

~~~~ ~ (C.47)

4

I S

—2h
3 
(eu) + ~~~ ~ 1 

[_r j j + ~ ~i+l ~~~ + (uA 0)141 3411+1,3+1 3

- 2ao 1+1,3+1 (*i+i,~+i 
— ~~~~~ (~ u) 1~1 341} (C.48)

~~~~ 
2(rb)~÷1~~÷1 Ax1 ~~~~~~ 

- 
~~~~~ 

+ ± 
~~~~ 

~
2(ru)jj+i 

S

~°O 1+1,3+1 ~~~~~~ 
— ~~~~~ ~— b A 0 141,341 

— 
~~~~ ~~~~~~~~~~~~~ 

— * ÷~)}}~
(C.49)

—

4
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[Ii ~= 2 [_ (rbr)j+j j÷i 
+ (rbr)14l 3 

— (rbr)
13~1 

+ (rbr)
1 + h

3 ~~~~
—

2
~O 1+1,3+1 + 81+1 3+1 

(u 1+1,3+1 + 
~i+l ,j+ 1~ 

— 1~) W
0 i+l,j + 81+1,3

2

(uj+l 3
2 + y )1 - i_ 1 i i  

~~i-t-l,j j 6 (~X~~~ J 
~: 

00 ~0)
~÷1,i÷1 (*~+~~~+~ 

— 1
~j ~~~~ 

+

1+1 (u
2
1+1 3+1 ÷ ~~~~~~ —2 [_~l+1,3+1 (ru)~~ 341 +

2+ (
~~ ~~~~~~~~ ~~~~~~~ 

— 
*~~

) - A0 1+1 (u 1+1,3 + ~~~~ + 2[_tj+1,j

1,3 1,3 
(ru)

j+1 j]~~ (C.50Y(ru) + T

A
~~i+1,j 

— 6 f~) 00 1+1,3 (r
1413 

+ t
1 3

)  (C.5l)

I

A 
- 2 — ± (a08u) 1~13 

-
- (C. 52)B3 =i+l , 3

A
C31413 

= -h
3 
+ ± (a~ ;~~~~) [(bAo)j+l,j + (*~÷~~ - *i,~)J . 

(C.53)

S 

~~ =~~~i~ 11 1
i+l ,j  6 (

~~~ 
00 1+1,3+1 (Tj+1 3+1 

+ r
1341

) (C.54)

- 
~~i+l,j 

= 2 + ± (aoBu) i+i j+i ~ (c.~~)

I I

1- A
— 3 6 ~

°O ~÷1 341~
(bA

0
)
1~1 3+1 

+ [k) ~~i+l,j+l - *i,j+l)]
4 5 (C.56)

‘S . ~
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2A hS3
141~~ 

= 2(—u
141,341 + u

141 ~
) + h

3 
(t i÷1 3+1 + r141 3

) —

— (~0~0) 1+13] + 
~~I j ‘ (C.57)

where 8j+~~~. ~
‘i+l,j~ 

A
0 1+1’ and are defined as before and

~O ~~~~~~~ 
= (r 141 3 

+ T~~3
) (*±÷~~ — *~~~~~~~ ) (C.58)

1+1,3 = 4 11~J 1+1,3 + i~J ~
~0 1+1,3 

= 8i+i,~ 
~~~~~~~ + 

~~~~ — A
0 1+1 [(br)j+i j + (bT)

uj j  
S

- 

~~ 1+1,3 (C.59)

The remaining coefficients are the same as those of the inner layer.

-

~~ 

;] 
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Appendix D

Block Trld iagonal Matrix Solution 
-

This appendix describes in detail the solution of the block tridiagonal

mai rix equation given by Equation (50).

Since this equation is block tridiagonal, L—U factorization can be used

to solve it. Following Hoffman [6],

A
~ 

LU ; L = [8~, I, 0] , U [o, a3, y3
] (D.l)

where I is the unity 3x3 matrix and 8, ci , and ? are 3x3 matrices. Equation

(50) then can be expressed as the two systems

LY=~~ , (D.2)

T J Z — Y  . .(D.3)

The L—U factorization requires that

a1 = A
1 

(D.4)

a
3 

= A
3 

— Bj?j_l 
, 2 < 3 < N+1 , (D.5)

8
3
a3_ 1 = B

3 
, 2 < 3 < N+l , (D.6)

S 

and 

C
3 

, 1 < 3 < N , (D.7)

S 

S y1
R
1 

, 
S 

(D.8)

— — B~~ y3_1 ~ 2 ~ 3 ~ N+l ~ (D.9)

S ~144]. ZN+1 - ~N+1 ‘ 
(D.10)

-

a:I Z
3 

— y
3 

— y
3 

Z341 , N > 3 > 1 . (D.ll)

I S

5- - -~~~ S .  - -  ~~ • 5 5~
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Because the matrices of Equations (42)—(46) are only 3x3, the linear

systems (D.4)—(D.11) can be inverted beforehand . Thus it is not necessary to us~

a generalized matrix inversion routine. Equation (D.4) becomes

[1 0 0

a — I 0  1 0 -

1 ~~~ A A . (D.12)

A3
1 

~~i
]• 

Ci1

For 3 > 2 the bottom row of B is zero ; thus, from Equation (D.6) the bottom

row of will also be zero. Then , from Equation (D.5)

[all cil2 a131 ~~~~ 
~~~~~~~~~~~ ~j _l1I ~~~ a22 ci~3 = 

1~~j_]. ~~j—1 ~;~3~1 I
La31 a32 a33J [A3 3 

B3
3 

C3
3 j

812 8131 [0 0 1
— I ~~ 822 ~23 

~ 
~ -~~

S 
- L° 0 0 

Ji LD3J_1 E33 1  F3
3_1J 

, 
-

which yields the relations -

S 

A A S

(all)3 
= Dl

3_ 1  
— (813)3 

D
,
3~~1 S

(a12)j ~~~—i 
— (8~3)3 

E~3 1  
,

A A(a13)3 
= Fl

3 1  
— (813)3 

F3
3 1- A A

(a21)3 
= D23_1 — (823)3 

D33_l
S 

(a22)j = 

~~j—l 
— 

~~23~j ~~j—l ‘ 
(D.13)

(a 23)j ~~j-l 
- (823)3 ~~~

_i

(a
31

)
3 — A3

3
A

(a 32 )
3 

B3
3 

,
A

(a33
)
3 

— C3
3 

. -

5~ 5~ S

S . 
— - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
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For j=N+l, Equation (D.5) becomes 
S

cil2 al3l [~~
N ~~N ~N11a21 a22 a23 = E214 F2N I S

S [a31 a32 a
33j L 0 1 

0J

812 8131 10 0 0 1
— 821 822 823 I 0 0 0 I (D.14) S

0 0 
JN+l S [‘

~ ~~N ~~N] ‘

which yields

[~11 ~12

~N+l I ~2i ~22 ~23 I S S

[0 
1. 0 

jN4l ~
. 

(D.ls)

where the first two rows are the same as Equations (D.13) with 3 = N+l and

j—1=N. Only the last row changes and is given by Equation (D.l5).

S Two cases must be considered for Equation (D.6), namely, 3=2 and

2 < 3  <N. For j=2,

[811 812 8131 ~ l 0 0 1 [~ ‘~ ~l1~~~ 822 823 I ~ ~~ 
= A2 

1 
C2
1 1 (D.16)

L
° 0 0 J2 L~’ ~~l ~1J L° 0 0 J

S which yields the solutions S 
-

(811) 2 ~~~~~~~~ ~~l 
— 

~~~~~]. 
A~1) I A2 ,

(612)2 — 

~
51 

~~~~

1 
— ‘

~l ~~1) IA2 ,

- (813)2 = Cl
1

/A
2

(821)
2 — 

~~~~ 
— 

~~i A’~31)/ A 2 , (D.l7)

— 
(822 )

2 
(B2

]~ — 
~~l 
(
~1 /A 2

- ,

(823) 2 — C2
1/A2 S

- S
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where

(D.18)

For 3 > 2, Equation (D.6) becomes

r811 812 8
~~] 

Ia
ll al2 al3~l 

. A 
~3_l1BiI A 3~~ 

A 3 1
821 822 823 1 ~

a2l a~~ a~3 = A23_1 B23_1 
~~~~ 

, (D.l9)

L° ~) 0 J~ La31 a32 a
33J 0 o J

which gives S

(811)3 
- [(~ a22 a33)3 1 + (~~ . a21 a32)31  + (~~ a23 a31)31

- (~~ a22 a31)31  
- (~~~~~ a23 a32)31  

- (~~~~ a21 a33)31] IA3

IA A A(812)3 
— L(B1 a11 a33)3_1 + (Al a32 a13)31  + (Cl a31 a12)31
A A

- (Bl a31 a13)3 1  — (Cl a32 a11)31  
— (~ ci33 U12)j_~] 

/8~~~

A A(813)3 
— {~ a a ) 

— + (Bl a21 a13)31  + (Al a12 a23)3111 22 3 1

— (~~ a22 a~ 3
)
3 1  

— cifl a23)
3 1  

- (Cl a12 a21)31] /A3
* 

~(D.20)

(821)3 
- (‘~ a22 a33

)
3 1  + (

~~ a21 a32)3_1 + a23 a31)31

(
~~

- a22 a31)3_ 1 - (~~ a23 a32
)3 1  - (~~ a21 a33)3_j]/A3 

,
S 

A 
- 

A(822 )
3 

= L(B2 a11 a33 )
3 1  + (A2 a

3~ 
a13)3 1  + (C2 a31 a12)31 r

A A
- ~~2 a

3~ a13
)3_ 1 - (C2 032 a11)3_1 - (~ a33 a12) j_ 1J /A j

I
(823)3 

I(c~ a1~ a22
)3_ 1 + (

~~ a21 a13)3_1 + a~2 a23)3 1—

I i 
- (A’~ a22 ci~3

)
j~~ 

- (C~ ~~~ ~23~j 1  
- ~~~~ u21)j 1J1A 3 ,

L:
, . 

-

~~~~~~~ 
I - -
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4

where

• 
A

3 
= (cc11 a22 a33)3_ 1 + (a21 a32 013) 3 1  + (ct31 a12. cz23 ) . 1

— (a31 a22 a13)31 
— (a11 a32 023)j_l -

— (a21 a12 a33)31  
. (D.2l)

Nex t, solve Equations (D 8) and (D.9) for y
3
. Now

-

y — 1Y 2 1

~ [~j 3 (D.22)

Hence, Equation (D.8) yields the three relations

(Y1)
1 — 0

(Y2)
1 ~~ ‘ (D.23)

(Y3)
1
=S3

1 . J 5

Equation (D. 9) reads S

[
~‘1 S~ [811 812 8121 i~i1
Y2 — 

~~j _ i — 821 822 823 I Y2 (D.24) 
S

L~
3i ~ 

- LS33 j [0 
0 0 J 3

Upon expansion, for 2 < 3 < N+l , the solutions are

(Y1)
3 

= - (811)3 
(fl)

3 1  
- (812)3 

(Y2)
3 1  

- (B~~3
)

3 
)3~~

(Y2)
3 

— S2
3 1  

— (821)3 
(Y1)3_1 — (822)3 

(Y2)~ _1 — (823)3 
(Y3) 3 1  , (D.25)

— - ‘ 
-

except that at 3 N+l , 
S

(Y3)~~1 — 0 , 
- 

- (D.26)

— - - -  
S
7~ I~~

5-
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which follows from Equation (49). Now solve Equation (D.lO) for Z
N+l

using Equation (D.l5):

a12 a131 [6*1 1~i1 .

a21 a22 0
23 1 ISU = Y2 I (D.27) 

-

[0 
1 ~ j  ~~~~~~~ L~J N+1 L° J N+l

which upon expansion and solving for the corrections yields

= (Y2)~~1 — (a23)~~1 (Y1)
~~l}/eN+l , 

- p

(I5u)~~~~1 
= 0 (D.28)

= [(a2l)N+l (Y1)~~1 — (all)N+l (Y2)
~~.l]/eN+l , 

S

where 
S 

- S

0N+1 = (013 a2l)N+l — (a11 a23)N+l S 
(D 29)

Next, solve for Z. from Equation (D.11) for 2 < 3 < N. 
-

~~~ 
~~~~ 1~1 [~i1 [0 0 0 -j r6~~~ 

-. 

S

S 

~ ~ ::J3 L~J3 = L:i3 - 

~ ~~ ~3jL~j3+1 (D.30)

which yields the three equations for the correction vectors S

(6*)~ - [(Yl a22 a33)3 + (r3 a12 a23)3 + (12 a1~ a32)3 - 

~S 

-

-
. (r3 a22 a13)3 

— (Yl a23 a32)3 
- (Y2 a12 a33)j}/~j

(6u)
3 

— [(Y2 a11 a33)3 
+ (Yl a23 a31)3 

+ (r3 a13 a21)3
— (Y2 a13 a31)3 

— (r3 011 a23)3 
— (Yl a21 a33)3}/$3 

(D.31)

- [(r3 a13 a22)3 + (Y2 a12 a31)3 + (Yl a21 a32
)

3 S

- (Yl a22 a31)3 
- (Y2 a11 a32)3 

- (r3 a12 a21)j}/~j , 
-

5-- - -w  5-- - -~
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• wh€re S

r3~ = (Y3)
3 

- A3 (6*) j+ i 
- (6u)

j+l 
- 

~~~~~~

. (6r)
3~~ 

, 
- 

(D . 32)

and •
3 
is identical to A

3÷i 
as def ined by Equation (D.21), or ,

= (a~~ a22 a33)
3 

+ (a12 a23 a31) .  + (a13 a21 a32) .  — (a13 a~~ a31)3

— (a11 023 a32)3 
— (a12 a21 a33)3 

= . 

- 

(0.33)

Note; Equations (0.31) hold for 2 < 3 < N. For 3 1 , use Equation (0.12) to get

0 ~ ~~ [ol [o 0 0 1 i~*21
~ ~~l ~J [

~
j = L&J L~1 ~ kJ L::~J (0.34)

- which yields the solutions

6*1 = 0  ,

6u
1 

= 0 , (0 .35)

, S

where r3 is given by Equation (0.32) and A2 by Equation (D.18).
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